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Abstract

The Dark Side of IoT

Ahmed Mohamed Hussain

With the emerging trend of smart IoT devices, providing and ensuring the privacy of
the users'-devices interaction relationship is a must; risks such as identifying users'
activities and detecting user behavior while at home or in office. We present a new
machine learning attack that exploits network patterns to detect the presence of
smart IoT devices, and services generated by these devices in the Wi-Fi radio
spectrum. This is considered a major problem when it comes to users' privacy since it
allows malicious users to infer on the other users' activities. We perform an extensive
measurement campaign for data collection. We build up a model describing the traffic
patterns characterizing three popular IoT smart home devices, i.e., Google Nest,
Google Chromecast, Amazon Echo, and Amazon Echo Dot. We prove that detecting
and identifying with overwhelming probability the presence of the aforementioned
devices in a crowded Wi-Fi scenario is possible. Finally, we introduce a mitigation
technique to preserve the users' privacy in the network. This work proves that
standard encryption techniques alone are not sufficient to protect the privacy of the
end-user. In contrast, more work is required to prevent non-trusted third parties to
detect and identify the users' devices.
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Chapter 1

Introduction

In recent years, the IoT technology has emerged rapidly and made it a buzzword. But not
anymore, since it now has taken over and become the core of everything in humans daily lives,
furthermore, it became a lifestyle. IoT devices are usually connected through a wireless connection
to the base station, to be connected to the internet, and to execute users commands. The wireless
connection between these devices is considered to be secured and encrypted. However, different
techniques and methodologies have been introduced to infer on the packets, namely encrypted
traffic classification using machine learning. Encrypted network traffic classification has emerged
as a technique to detect and identify traffic patterns despite being anonymized by one or more
encryption layers. The main goal of traffic classification is to distinguish different applications’
network traffic (represented as flows) based on statistical features independently of the information
that can be retrieved from the packet headers, such as network and physical layer addresses.
Standard features can be packet size and interarrival times between consecutive packets, while
more advanced features take into account statistics such as mean and variance computed over
sequences of N consecutive packets. While encryption layers added by the transport layer
(TLS) or applications such as VPN, protect the end user from adversaries willing to exfiltrate
information from the content of the packet. This affects traffic patterns, as they are very difficult
to hide without affecting services performance. The wireless scenarios addressed in this thesis
explores the effectiveness of such an attack. That is due to the Wi-Fi intrinsic broadcast nature,
wireless communications can easily eavesdrop without the consent of the user, and an adversary
can exploit the traffic pattern generated by users to infer either on the devices they have or the
services being used. This presents major issues for the users’ privacy, not just because non-trusted
third parties can infer the user behavior, but also detect the presence of specific devices to target
in subsequent attacks.

1.1 Problem Statement

With the exponential growth rate of the Internet of Things (IoT) devices, the number of connected
devices is anticipated to reach 500 billion by 2030. One popular category among users is the
Smart Speakers such as Amazon Echo and Google Nest Mini. Due to the services and features
they provide, these Smart IoT devices are found and used almost everywhere, in places such as
homes, offices, schools, and sometimes in government offices. Services are performed based on
the user vocal command(s), such as streaming music, news, making phone calls, buying products
online, and many others. Users can also control some services through portable devices, to
perform certain actions. With this definitive explosion rate of IoT devices, a broad majority of
today’s network traffic is encrypted to ensure the security and privacy of the communications.

1



Recent techniques involving machine learning and artificial intelligence made it possible to infer
what type of application and services the users are running on their devices either at home or in
the workplace network, without being physically present or connected to their network. This
thesis report introduces an adversarial model that leverages information found in the Wi-Fi
network packets header to distinguishing and identifying services running by 4 different smart
IoT devices: Amazon Echo, Amazon Echo Dot, Google Nest Mini, and Google Chromecast, using
machine learning.

1.2 Methodology

The method presented in this thesis report is of experimental computer science. We present
an adversarial model that is capable of identifying services/applications running on smart IoT
devices, leveraging machine learning techniques using packet size, and interarrival times between
packets. In the initial stage, we have studied the field of machine learning and network traffic
classification, to identify which technique is applicable. Thereafter, we collected wireless (2.4Ghz)
traffic between four different IoT devices and internet access point, streaming music, news, and
YouTube. At this stage, we extracted both packet sizes and computed interarrival times between
packets then classified them using machine learning. Additionally, 8 statistical features were
extracted from both features, using the windowing technique. The classification is done on several
stages, first: the packet sizes, second: interarrival times, and finally both features combined. The
results are quantified in terms of accuracy and the number of packets needed to achieve this
accuracy.

1.3 Limitations

Due to the wide variety of smart IoT devices and the time needed for generating as well as
collecting traffic, a limited set was chosen. This set is made of the most widely used devices,
manufactured by Google and Amazon. The services/applications running on these devices vary
from one device to another. That is due to configurations defined by the manufacturer and the
compatibility of some of the devices.

1.4 Scientific Contributions

In this thesis, We propose a methodology based on machine learning classification to detect and
identify the presence of smart devices in the Wi-Fi radio spectrum. We tested our approach
against four different smart devices, i.e., Google Chromecast, Google Nest Mini, Amazon Echo,
and Amazon Echo Dot, and three services, i.e., Music, YouTube, and News streaming. We proved
that the aforementioned devices and services are affected by a critical privacy leakage since they
allow unauthorized third parties to detect their presence, even in the case of standard multi-layer
encrypted streams such as WPA and HTTPS. This thesis proves that the most commonly used
smart devices in the market and their related services can be easily detected with overwhelming
probability (> 0.99) from a crowded Wi-Fi link. We provide deep statistical insights about
the traffic characterization, we show how standard machine learning techniques can be used to
detect the presence of the devices, and finally, we highlight potential countermeasures against
our attack.
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1.5 Report Structure

The remaining chapters of this thesis report are as follows: Chapter 2 presents the background
related to statistics, machine learning, basic computer networks, and IoT devices. Chapter 3 ad-
dresses the related work done on encrypted traffic classification in general, and IoT in particular.
In Chapter 4 we present the adversarial model along with the traffic collection set-up, and
analysis of the traffic collected. In Chapter 5 we classify the traffic for each service and present
the techniques used to achieve the optimal accuracy. Chapter 6 address the countermeasures
and techniques used for mitigation. Finally, the thesis is concluded in Chapter 7, along with a
discussion of the results and suggestions for future work.

1.6 Publications

This thesis resulted in a peer-reviewed paper [6] that represents a compact form of this work in
addition to various differences (e.g., evaluations, devices, and such).
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Chapter 2

Background

This chapter presents an overview of methodologies and tools used throughout this thesis study.

2.1 Statistics

In this section we provide a brief overview on some of the statistical features found in [7, 8] and
used for data analysis in this thesis.

2.1.1 Statistical Methods

1. Mean (µ): is the sum of all values in the data-set divided by their number as shown
in Equation 2.1. It is used to find the middle value in the data-set.

2. Variance: is the differences between each of the numbers in the data-set and the mean,
squared. Then divided by the total number of elements in the data-set, as shown in Equa-
tion 2.2. It is used to measure how far each of the values from the mean, and therefore
from every other value in the data-set.

3. Standard Deviation (σ): is the square root of the variance, as defined in Equation 2.3.
It measures the dispersion of a data-set relative to its mean.

4. Minimum: is the minimum value in the data-set.

5. Maximum: is the maximum value in the data-set.

6. Summation: is the sum of all the values in the data-set.

7. Skewness: measures the asymmetry of the data around the sample mean and defined as
in Equation 2.4.

8. Kurtosis: measures how outlier-prone a distribution is, and defined as in Equation 2.5.
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µ = 1
N

N∑
i=1

Ai (2.1)

V = 1
N − 1

N∑
i=1

|Ai − µ|2 (2.2)

S =

√√√√ 1
N − 1

N∑
i=1

|Ai − µ|2 (2.3)

s = E(x − µ)3

σ3 (2.4)

k = E(x − µ)4

σ4 (2.5)

2.1.2 Sliding-Window Computational Method

Analysis using the raw data collected for any application is effective when the data source is
identified and the data-set size is considerably small. When dealing with large data-sets, the
sliding window technique is considered handy, as it allows for extracting and generating new
features from the original data-set, and reduces the data-size. which is useful as it provides more
insights on the data, with less number of samples. It relays on a predefined N number of samples
that to be mapped and represented by one sample. Applying this technique can be done using
the previously mentioned statistical methods.

2.2 Machine Learning

Machine learning is a branch of today’s popular artificial intelligence, regarded as the primary
method of understanding and analyzing data in the modern age of big data. Machine learning
algorithms are built to model intelligence by learning from previous events and anticipating what
may arise in the future. Machine learning methods have been widely applied in numerous fields,
including pattern analysis, computer vision to engineering in spacecraft. Figure 2.2.11,2 shows
the categories and their subcategories learning methods, that fall under the machine learning
umbrella. There’s one category that is not addressed which is Reinforcement Learning.

1RNN: Recurrent Neural Networks
2CNN: Convolution Neural Networks
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Machine
Learning

Supervised Unsupervised Deep Learning

Classification

Regression

Clustering Multi-layer
Perceptron

CNN

RNN

Figure 2.2.1: Machine Learning Categorization

2.2.1 Supervised Learning

Figure 2.2.2: Supervised Learning Process [1]

Supervised learning a learning model based on mapping input data to labeled output data.
Supervised learning algorithms such as linear regression or decision tree, includes training and
building the model with training data, which consists of one or more input features as well as the
desired output. These algorithms iteratively optimize the objective function to predict the desired
output. Test data is then used to test how accurate the model is for predicting new unknown
data. The test data-set is either from the training set or a new data-set. Supervised learning has
two forms of tasks: Regression and Classification. Figure 2.2.3 illustrates the difference between
the two approaches.
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Regression

Regression techniques are typically used in predicting, forecasting, and finding relationships
between quantitative data. It is widely used since it is one of the earliest learning techniques.
Regression can be used to determine if a linear relationship exists between particular radiation
therapy and tumor sizes.

Classification

Classification techniques are used in mapping different inputs to different outputs, i.e. x → y.
A typical example is whether or not an email is a spam. The algorithm can provide training
data from e-mails that are spam and not spam utilizing a two-class data set. The model searches
feature in the data that corresponds to either class and generates the mapping function that
maps Y to f(x). The built model uses this function to classify unknown emails, to determine if
it is a spam or not.

Figure 2.2.3: Gene example to illustrate the difference between Classification and Regression [2]

2.2.2 Decision Trees

Decision Trees apply either a sequential or multi-stage approach to assign labels to their leaves.
Labeling leaves is based on a chain of decisions that are based on sequential test results rather
than using single and complex decisions. The branches in the decision tree are made of a set
that represents sequences of decisions, where the labels are represented by the leaves [9].
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Figure 2.2.4: Decision Tree Representation

Random Forest

Random Forest [10] is an ensemble Machine Learning technique that is considered supervised
and built as a combination of different tree predictors3. This type of ensemble classification
relies on the fact that multiple classifiers (defined by the user) will provide a more reliable and
generic classification rather than using one single classifier. This also ensures that the model is
less susceptible to over-fitting. In Random Forest, each classifier is represented by a tree and
depends on its own independently sampled random values vector. Once a large sufficient number
of trees is generated, each tree selects the most popular class at input x. The randomization
approach is used, to guarantee diversity among the decision trees.

2.2.3 Unsupervised Learning

In comparison with supervised learning, the output data is not labeled. Unsupervised algorithms
aim to find structure and trends in the distribution of input data. For example, a clustering
algorithm like K-Means attempts to cluster and partition the data based on the K number of
centroids that define the clusters. Figure 2.2.5 shows how data is clustered into different groups.

Figure 2.2.5: K-Means Clustering [3]

3Decision Tree(s)
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2.2.4 K-Fold Cross Validation

Before starting with the classification procedures, the data-set is partitioned into the following
three different sets:

1. training set to train the model,

2. validation set on to validate the models and

3. test set to evaluate the trained model.

Cross-Validation (CV) involves dividing the original data-set into k-folds of equal number of
samples. From a set that has k samples, the first k − 1 samples are to train the model, while the
k sample is used for validation of the built model [11]. Figure 2.2.6 illustrates how the k-fold CV
works.

Figure 2.2.6: K-fold Cross Validation [4]

2.2.5 Deep Learning

Deep learning is a form of artificial intelligence and machine learning framework that is widely
used today for a range of classification tasks. It allows multi-layered computational models
to learn data by extracting more features with increasing the number of hidden layers (where
training happens) in the network. Each layer consists of more than one artificial neuron. Neural
networks operate by manipulating the input data by changing their weights, which are hypotheses
about how the input features are mapped with each other and the object’s class. As the network
is trained, the weights are changed, and they converge on weights that accurately represent the
relationships between features. Figure 2.2.8 illustrates a common deep learning network with
N inputs, N hidden layers, and N Outputs. A deep learning network is also referred to as an
artificial neural network (ANN).
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Figure 2.2.7: Neuron Node

Figure 2.2.8: Artificial Neural Learning Network

Deep Learning Techniques

• Multi-Layer Perceptron Neural Networks (MLP). Is simply a deep artificial neural
network that is made of multiple perceptrons. The structure of the network is simply made
of 2 main layers, which are the input and output layers. The input layer is to receive
the signal, and the output layer predicts which output perceptron the input relates to.
Between these layers, one or more hidden layers that are the main computing engine behind
MLP [12].

• Convolutional Neural Networks (CNNs). Similar to MLP, CNNs are a type of neural
network that used mainly to classify images, cluster images by correspondence, and perform
object recognition. For example, convolutional neural networks are used to recognize faces,
individuals, street signs, and tumors [13].

• Recurrent Neural Networks (RNNs). Is an artificial neural network that recognizes
patterns in data sequences. Such as data from sensors, financial markets, and government
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agencies (but not limited to) numeric times series [14].

• Generative Adversarial Networks (GANs). These are systems of algorithms that
use two neural networks to compete against each other, to construct new artificial data
instances that can be passed on to true data. They are mainly used in the generation of
pictures, videos, and voices [15].

2.3 Internet of Things (IoT)

The IoT environment contains web-enabled, intelligent devices using embedded technologies,
including processors, sensors, and communication hardware. The devices do most of the work,
although people can interact with these devices. IoT can also use artificial intelligence (AI)
and machine learning to facilitate and dynamically collect data. Linkage, networking, and
communication protocols used with these devices depend largely on the specific IoT applications
used. Connecting to these web-enabled systems, networking, and communication protocols
ultimately depend on the IoT applications used. IoT can enhance communications also make it
faster and through using artificial intelligence (AI) and machine learning.

2.3.1 IoT Home Devices

Amazon Echo

Echo is a lineup of smart speakers manufactured and sold by Amazon [16]. Echo is equipped
with a total of 7 omnidirectional microphones designed to pick up the user voice from anywhere
in the room. 6 distributed circularly and 1 microphone in the middle. Figure 2.3.1 (b) shows
the locations of the exact microphones. The device is powered by a virtual assistant named
”Alexa” that takes the user vocal command/order and execute a variety of commands. Such as
playing music, reading news or an e-book, reporting the environment and traffic, sports scores
and schedule, calling, shopping, checking users’ bank account, film scheduling, checking the users’
calendar, setting up time-trip, laughing, hosting a game night and answering questions. It can
also communicate with intelligent home devices such as Philips hue bulbs [17].

(a) (b)

Figure 2.3.1: Amazon Echo (a) and Microphones Locations (b)
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Amazon Echo Dot

Echo Dot [18] is same as Echo (previously described) in term of features and functionalities. The
only difference is size and number of microphones. Echo dot has only four far-field microphone
array designed to pick up the user voice commands.

(a) (b)

Figure 2.3.2: Amazon Echo Dot (a) and Microphones Locations (b)

Google Nest Mini

Nest Mini is a smart home device developed and sold by Google. Equipped with only three
far-field microphones for voice detection and powered by Google Assistant, the device offers
similar features provided by Echo, ranging from streaming music and news, to control smart
home devices [19, 20].

Figure 2.3.3: Google Nest Mini (2nd Generation)
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Google Chromecast

Chromecast is a streaming wireless device that connects users’ phone, tablet, or computer with
an HD monitor. If your monitor or TV screen has an HDMI port (which nearly every TV screen
nowadays has), you can turn it into a smart device that can connect to all sorts of apps you have
on your phone or computer.

Figure 2.3.4: Google Chromecast
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Chapter 3

Related Work

This chapter provides an overview of the work that has been done in the area of network traffic
classification. Followed by an in-depth and detailed review of the classification of the wireless
encrypted traffic and its related works.

3.1 Network Traffic Classification

Classification of regular network traffic started in the mid-2000s without the use of the Machine
Learning techniques, where authors in [21] introduced a payload-based algorithm for Peer to Peer
(P2P) traffic identification. The identification is based on transport layer protocols TCP and
UDP and identifying specific bit strings in the application level user data. Using features such as
source/destination port and IP addresses, as well as payload size. This method is not a machine
learning-based, it was comparison based. It was used to identify different P2P protocols.

Roughan et al. [22] proposed a supervised classification framework that uses nearest neighbors,
linear discriminate analysis, and Quadratic Discriminant Analysis algorithms to classify different
network applications traffic to predetermined QoS traffic classes. They used packet size as the
only feature to distinguish between application classes.

Moore and Zuev [23] in 2005 used Näıve Bayes to classify traffic by application. Their traffic data-
set consisted of applications for data transfer (FTP), HTTP protocol, database communications1,
ssh, mail protocols, worms, and virus attacks. For an accurate evaluation, they manually
categorized each of the flows, based on its content. Features extracted from packets in each
flow such as the total flow duration, TCP port, statistical features (such as mean and variance)
for the inter-arrival time between packets, and the payload size. In addition to the Fourier
transformation of the inter-arrival time between each of the packets, and effective bandwidth
based on entropy. Näıve Bayes showed poor performance in comparison with the Näıve Bayes
kernel estimation method. Näıve Bayes scored 65.26% while using the kernel estimation method
achieved 93.50%.

Li and Moore [24] introduced an efficient approach to classify the traffic using the C4.5 decision
tree classifier, without investigating the packet content. They achieved 99.8% total accuracy by
collecting 12 features, from the first five packets of the flows. The majority of the traffic mainly
had than 80% of web browsing traffic.

1User executing queries in the network.
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3.2 Encrypted Network Traffic Classification

Security and privacy of communication are of paramount importance given the growing number
of devices. The vast majority of today’s network traffic is encrypted to guarantee the security
and privacy of the communications. Different tools (such as VPN and Tor) is used to ensure
Confidentiality, Integrity and Availability (C.I.A) of the communications between the machines2

across different networks. Several studies showed that it is possible to identify the applications
running by the user in the network.

3.2.1 Encrypted Website Traffic Identification

Kausar et al. [25] proposed an attack scenario that is based on a side-channel attack and leverages
cluster classification to identify visited web pages. The attacker eavesdrops the wireless encrypted
traffic between the user smartphone and the access point. Timestamp and packet direction is
then extracted from the packet and used as the features to classify the traffic using K-Nearest
Neighbor Classifier. The accuracy achieved of their attack is 96%.

3.2.2 Supervised Encrypted Application Traffic Classifications

Alshammari et al. [26] assessed the robustness of machine learning-based traffic classification
for classifying encrypted traffic for SSH and Skype sessions. Five different Machine Learning
methods were used and trained with data from one network. For testing, data from an entirely
different network were used. The classifiers have been evaluated using flow-based features,
where IP addresses, source/destination ports, and payload information have been anonymized.
Results indicate the decision tree classifier performs much better than other algorithms on the
identification of both SSH and Skype traffic on totally different networks.

Zeng et al. [27] introduced a general framework that is deep learning-based for traffic classification
and intrusion detection. The (deep full range) DFR is a light framework is based on three
different deep learning algorithms: Convolutional Neural Network, Long Short-Term Memory,
and Stacked Auto-Encoder. The data-set consisted of 6 types of regular encrypted traffic such as
email, chat, streaming, file transfer, VoIP, and P2P. The accuracy achieved using this framework
was above 99.6% for all the 6, in comparison with classifying 1D-CNN and decision tree.

3.2.3 IoT Traffic classification

Acar et al. [28] demonstrated how to profile smart home IoT devices communications through
multi-stage privacy attacks and applying machine learning on features extracted. The proposed
adversary model can automatically detect the activities of IoT devices and identify the users’
activities, even if the communication is encrypted. The classification of the types, actions, states,
activities of the devices achieved very high accuracy, which is above 90%. [29] performed analysis
on more than 20 IoT devices such as cameras, lights, appliances, and health monitors. Data-set
used consisted of traces collected over 3 weeks. From the data-set, they extracted features such as
data rates and burstiness, activity cycles, and signaling patterns. Using these features they tested
two approaches developed a random forest-based classification method, that can distinguish IoT
from non-IoT traffic, furthermore identifying specific IoT devices with over 95% accuracy.

Jackson et al. [30] investigated the use of six different supervised machine learning algorithms
(C4.5 decision trees, random forests, linear kernel support vector machines, radial basis function
kernel support vector machines, multilayer perceptron neural networks, and k-nearest neighbors

2A server or regular computer machine
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classification), to extract information from the encrypted TCP packets. They implemented
a request type classification that consists of classifying the encrypted information exchanged
between Alexa cloud service and the Echo device by the type of user request that is being
answered. Using three different feature vectors: TCPtrace [31] Features [32] Vector, Histogram
Feature Vector, and Combined Feature Vector which combines the previous two features vectors.
Classification results show that using Random Forests, they were able to achieve accuracy more
than 93% for each of the features vectors, surpassing the accuracy of the other five algorithms.

Msadek et al. [33] proposed machine learning-based fingerprinting, to map IoT devices to their
associated encrypted traffic flow. They assumed that the adversary is capable of passively
collecting the traffic generated from the IoT devices while being remote, by either monitoring
the gateway or through a compromised IoT device. The data-set used in their analysis [34]
constitutes of 7 main categories: hubs, cameras, health care devices, light bulbs, electronics,
air quality sensors, switches, and triggers. All of the devices were connected to an access point
through wireless, except three, connected by wire. The network set-up in their study was
adapted from [35]. The adversary is capable of obtaining the bidirectional flows generated by
the victim. The classification of the traffic was done using five different classification algorithms.
Adaboost [36] outperformed the other methods with 95.5% accuracy in identifying the type of
the device.

Shahid et al. [37] presented a machine learning-based approach to identify the type of IoT
devices connected to the network, by analyzing the bidirectional flows. From the first N packets
exchanged between the internet and IoT devices, they extracted two features: packet size and
inter-arrival times. They considered four different IoT devices: D-link Motion Sensor, Nest
Security Camera, TP-Link Smart Plug, and a smart Bulb. Their devices were connected to an
access point which in turn was not connected directly to the internet. The traffic from, and to
the internet is redirected through a Raspberry Pi that is used for capturing the traffic. Which
is not directly collected from the wireless link between the devices and the router. Random
Forest, Decision Tree, Support Vector Machine, K-Nearest Neighbors, Artificial Neural Network
and Naive Bayes were used for classification. The best performance has been achieved by using
Random Forest with 99.9% accuracy.

Sivanathan et al. [29] applied machine learning on a data-set collected over three weeks, for more
than 20 IoT devices. Such as cameras, lights, appliances, and health monitors. They extracted
features such as data rates and burstiness, activity cycles, and signaling patterns. By using
these features, they were able to exploit and distinguish IoT from non-IoT traffic, furthermore
identifying specific IoT devices with about 95% accuracy.

Santos et al. [38] used a data-set that was collected within a smart campus [29] to identify and
classify the traffic. The total number of devices in this data-set is 18. Only 11 of them are IoT
devices, while 7 are none IoT devices. The considered features were maximum packet size in
the forward direction, source port, destination port, and average packet size. They were able to
identify each device network traffic flow, but not the application running, with 99% of accuracy
by using the Random Forest algorithm.
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Chapter 4

Adversarial Model, Measurements
Set-up & Initial Observations

In this chapter, we introduce our measurement set-up by considering both the hardware and
the software tools we adopted, the adversarial model, and scenarios. Finally, analysis of the
collected data to identify if a pattern exists between the collected traffic for devices running
different services.

4.1 Hardware Set-up

Hardware–Smart Devices. Our smart home set-up consists of the four smart home devices
mentioned in chapter 2. These devices are distributed in different places and connected to a
D-Link router (1200AC) via Wi-Fi.

Adversary–Hardware. Alfa Card (AWUS036NH) was adopted for capturing the traffic by
switching to monitor mode, and therefore, collecting all the over-the-air data traffic.

Adversary–Software. We consider a standard Linux distribution (Kali Linux), and the tools
airodump-ng/Wireshark for collecting and logging the Wi-Fi packets. Finally, we adopted
MATLAB 2019b for data pre-processing and classification.

4.2 Data Collection Procedures

We would like to stress that we resort to MAC addresses to select the traffic of the smart
devices and generate the ground truth with the machine learning algorithms. As it will be
clear in the following chapters, the classification will be independent of the aforementioned
information, while being rooted only on features like packet size, interarrival times, and statistical
computations derived from them. The data collection has been performed accordingly to the
following procedure:

1. We adopted airodump-ng to identify the victim access point and the devices connected to
it.

2. Identifying1 information such as MAC addresses and WiFi channel used by the devices in
the network.

1Device type can be identified using: https://macvendors.com/
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3. Setting the Alfa card channel to the one used by the smart device.

4. Using either TCPDump or Wireshark for traffic collection and filtering out the traffic
generated from the access point to the IoT device. Using the MAC address obtained from
step 1.

5. Extract the time and packet size associated with each over-the-air message.

The traffic forwarded by the access point to each of the smart devices is collected over approxi-
mately 8 hours of continuous news, music, and YouTube streaming. In our set-up, we ensure that
no other devices are connected to the network other than the IoT devices. The total number of
packets forwarded by the Wi-Fi access point to each device is approximately 280,000 for each
service. In total, the overall data-set size sums up to 1,960,000 packets of multimedia streaming
by all devices.

4.3 Adversary Model

The adversary model proposed in this thesis has two main characteristics:

• Being Stealthy, and

• Resource Constrained.

Based on the assumption that the adversary is capable of eavesdropping and collecting the
Wi-Fi traffic, the adversary can be located within the premises of the victim (hiding in plain
sight, which makes him stealthy) or far away (heavily depends on the equipment’s capabilities).
Resource-constrained means that the adversary has limited access to computational resources,
to extract and generate features. Figure 4.3.1 illustrates the adversarial model. A general user
case scenario is considered, where the user enjoys interacting with different IoT smart devices
connected to the Internet. These devices provide different smart services such as streaming news
and music based on the users’ voice commands. Users’ voice command is detected and processed
by the smart device and sent to the cloud service. The cloud service replies to the smart device
with the answer in the form of an audio stream, or action, based on the desired service.

The adversary is assumed to be far away from both the device and the Wi-Fi access point, but
he can still eavesdrop and collect the Wi-Fi traffic. In particular, this adversary model takes into
account the stream of messages from the cloud to the device (i.e. the in-going flow). For each
eavesdropped message, the adversary is only interested in recording the packet size and the time
at which the packet is received.
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Figure 4.3.1: Adversary Model

The adversary model in Figure 4.3.1 is applied across the scenarios introduced in the following
sections.

4.3.1 Features Extraction and Generation

Raw Features

The raw reception times and packet sizes are extracted from the traces. Inter-arrival times are
calculated as Tx+1 − Tx, where Tx+1 is the time of the packet x + 1 that is received after packet
x.

Statistical Features

Different statistical features have been adopted in the literature to uniquely identify patterns from
encrypted traffic [30, 28, 38]. In this thesis, we consider 8 statistical features: standard deviation,
sum, variance, maximum, minimum, mean, median, skewness, and kurtosis (see Section 2.1).
These features are extracted by using a sliding window technique, where a window of N adjacent
packets is considered for the computation of the aforementioned statistics.

4.4 Commands–Applications–Services

In this thesis, we focus mainly on the most widely used commands, applications, and services
among regular users. Famous applications such as: Spotify, YouTube for streaming both music,
videos. Additionally, we focus on News streaming by the Bloomberg skill on Amazon devices,
since the majority of the users tend to have the news read by the smart IoT devices. The
following is the services streamed by each of devices:

1. Amazon Echo: News and Music

2. Amazon Echo Dot: News and Music

3. Google Chromecast: YouTube and Music
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4. Google Nest Mini: Music

4.5 Preliminary Data Collection and Initial Observations

4.5.1 Analysis Discussion

In this chapter, we introduced the adversarial model and described all the necessary steps for data
collection. Traffic associated with each device and service were collected and analyzed to identify
the possibilities of distinguishing a pattern. The two features analyzed are the interarrival times
of the packets and the packet size for each device independently.

Interarrival Times Analysis. For each device and service, we extracted and analyzed the
interarrival times as reported for each device running single service, and combined in Figure 4.5.17a
which shows the interpolated inter-arrival times for the four devices and three services (except
Google Nest Mini running one service, and Amazon Echo and Echo Dot running 2 different
services). Although the samples have similar patterns, the interpolating polynomial functions
have distinct patterns meaning that each service on each device can be potentially identified by
just comparing the interarrival times. Table 4.5.1 lists all the interarrival times with the highest
occurrence, associated with device and service. The values are obtained from the previously
introduced interarrival times normalized histograms.

Device Service Interarrival
Time [Seconds]

Figure

Amazon Echo Music 2.15 × 10−7 4.5.1b
News 1.90 × 10−7 4.5.9b

Amazon Echo Dot Music 2.5 × 10−6 4.5.3b
News 1.6 × 10−7 4.5.11b

Google Mini Nest Music 1.13 × 10−5 4.5.5b

Google Chromecast Music 3.4 × 10−7 4.5.7b
YouTube 1.68 × 10−7 4.5.13b

Table 4.5.1: Interarrival Times and their occurrences associated with devices and services

Packet Sizes Analysis. Packets sizes can be easily extracted and used directly for analysis (to
identify the existence of a unique pattern) and classification. Figure 4.5.17b shows the packet size
analysis as a function of the 7 classes considered in this paper. We observe that the frequency
associated with the packet size is very different among the 7 considered categories, in particular
when considering packet sizes larger than 800 bytes. Table 4.5.2 summarize the packet sizes with
the highest occurrence in the traces associated with each device and service.
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Device Service Packet Size
[Bytes]

Occurrences Figure Table

Amazon Echo Music 1571 85500 4.5.2 4.5.5
News 1571 187280 4.5.10 4.5.9

Amazon Echo Dot Music 1571 183828 4.5.4 4.5.6
News 1402.1 129315 4.5.12 4.5.10

Google Mini Nest Music 1571 249309 4.5.6 4.5.7

Google Chromecast Music 1523 228935 4.5.8 4.5.8
YouTube 1523 4771023 4.5.14 4.5.11

Table 4.5.2: Packets Sizes and their occurrences associated with devices and services

Noise

The collected noise consists of traffic generated by devices that are connected and not connected
to the same network where services were streamed through. The trace consist of 2,130,318 packets,
that represents different types of protocols including: ACK, QoS, ICMP, DNS requests, and
other requests types. As illustrated in Figure 4.5.15b, Table 4.5.3 points out the most occurred
interarival time within the noise traces. Similarly, the most occurred packet size represented
in Figure 4.5.16 is addressed in Table 4.5.4.

Type Service Interarrival Time [Seconds] Figure
Noise Mixed 1.21 × 10−5 4.5.15a

Table 4.5.3: Noise Most Occurred Interarrival Times

Type Packet Size [Bytes] Occurrences Figure Table
Noise 42 1364214 4.5.16 4.5.12

Table 4.5.4: Noise Most Occurred Packet Size

The remaining parts of this chapter provide the conducted analysis of the data collected associated
to each use case.

4.5.2 Use case I: Streaming Music

In this case scenario, the user has two options to stream music using these devices through
Spotify.

First, by vocal commands2 requesting from the IoT device(s) to play a song, music list, or a
custom mixed playlist generated by the device itself. The user initiates command such as ”Alexa,
play music” or ”Hey Google, play music”.

Second, the user can set the music to be played using the Spotify app through his devices such
as phones or computers. For this use case, 4 traces were collected from each device, consisting of
traffic generated from the access point to Device itself.

Each device traffic is represented by a trace that is approximately 8 hours of continuous music
streaming.

2All devices except Google Chromecast
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Amazon Echo

Figure 4.5.1a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.1b shows the most occurred interarrival time 2.15 × 10−7. For the packets sizes, Fig-
ure 4.5.2 and Table 4.5.5 shows the packets sizes and their occurrences. Packets with the size of
1571 bytes dominates the entire trace, with an amount of 249,309 packets of the total number of
packets.
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Figure 4.5.1: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.2: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

96 15100
259.89 543
423.78 1630
587.67 1060
751.56 109
915.44 585
1079.3 249
1243.2 5492
1407.1 6921
1571 249309

Table 4.5.5: Packets sizes and
their frequencies
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Amazon Echo Dot

Figure 4.5.3a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.3b shows the most occurred interarrival time 2.5×10−6. For the packets sizes, Figure 4.5.4
and Table 4.5.6 shows the packets sizes and their occurrences. Packets with the size of 1571 bytes
dominates the entire trace, with an amount of 187,280 packets of the total number of packets.
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Figure 4.5.3: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.4: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

48 9143
217.22 710
386.44 785
555.67 384
724.89 151
894.11 411
1063.3 471
1232.6 6781
1401.8 3987
1571 187280

Table 4.5.6: Packets sizes and
their frequencies
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Google Nest Mini

Figure 4.5.5a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.5b shows the most occurred interarrival time 1.13 × 10−5. For the packets sizes, Fig-
ure 4.5.6 and Table 4.5.7 shows the packets sizes and their occurrences. Packets with the size of
1571 bytes dominates the entire trace, with an amount of 187,280 packets of the total number of
packets.
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Figure 4.5.5: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.6: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

51 22166
219.89 2322
388.78 1144
557.67 729
726.56 368
895.44 524
1064.3 1140
1233.2 406
1402.1 129315
1571 39356

Table 4.5.7: Packets sizes and
their frequencies
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Google Chromecast

Figure 4.5.7a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.7b shows the most occurred interarrival time 3.4×10−7. For the packets sizes, Figure 4.5.8
and Table 4.5.8 shows the packets sizes and their occurrences. Packets with the size of 1523 bytes
dominates the entire trace, with an amount of 228,935 packets of the total number of packets.
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Figure 4.5.7: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.8: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

99 19523
257.22 1489
415.44 779
573.67 733
731.89 500
890.11 930
1048.3 979
1206.6 975
1364.8 994
1523 228935

Table 4.5.8: Packets sizes and
their frequencies
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4.5.3 Use case II: Streaming News

In this use case scenario, the user has only one option to stream News using these devices.

The user has to initiate a vocal command3 requesting from the IoT device(s) to stream the news
from the default source, or by specifying which source. The user initiates command such as
”Alexa, play the news” or ”Alexa, play the news from CNN”.

Amazon Echo

Figure 4.5.9a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.9b shows the most occurred interarrival time 1.9 × 10−7. For the packets sizes, Fig-
ure 4.5.10 and Table 4.5.9 shows the packets sizes and their occurrences. Packets with the size of
1571 bytes dominates the entire trace, with an amount of 183,828 packets of the total number of
packets.
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Figure 4.5.9: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.10: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

96 13289
259.89 652
423.78 828
587.67 241
751.56 231
915.44 86
1079.3 547
1243.2 114
1407.1 2447
1571 183828

Table 4.5.9: Packets sizes and
their frequencies

3All devices except Google Chromecast and Mini Nest
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Amazon Echo Dot

Figure 4.5.11a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.11b shows the most occurred interarrival time 1.6 × 10−7. For the packets sizes, Fig-
ure 4.5.12 and Table 4.5.10 shows the packets sizes and their occurrences. Packets with the size
of 1571 bytes dominates the entire trace, with an amount of 183,828 packets of the total number
of packets.
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Figure 4.5.11: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.12: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

99 5761
262.56 213
426.11 351
589.67 171
753.22 195
916.78 139
1080.3 315
1243.9 176
1407.4 192
1571 85500

Table 4.5.10: Packets sizes and
their frequencies
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4.5.4 Use case III: Streaming YouTube

In this case scenario, the user has only one option to stream YouTube, which is done using Google
Chromecast.

The user has to open the YouTube app on any of his devices (phone, tablet, laptop...etc) that is
connected to the same network as the Chromecast. The user then has the option to ”cast” any
video to Chromecast, and automatically start streaming.

Google Chromecast

Figure 4.5.13a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.13b shows the most occurred interarrival time 1.68 × 10−7. For the packets sizes, Fig-
ure 4.5.14 and Table 4.5.11 shows the packets sizes and their occurrences. Packets with the
size of 1571 bytes dominates the entire trace, with an amount of 4,771,023 packets of the total
number of packets.
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Figure 4.5.13: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the interarrival times
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Figure 4.5.14: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

99 18362
257.22 8148
415.44 1020
573.67 87319
731.89 95358
890.11 983
1048.3 960
1206.6 840
1364.8 3581
1523 4771023

Table 4.5.11: Packets sizes and
their frequencies
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4.5.5 Noise

Figure 4.5.15a illustrate the distribution of the interarrival times and their occurrences. Fig-
ure 4.5.15b shows the most occurred interarrival time 1.21 × 10−5. For the packets sizes, Fig-
ure 4.5.16 and Table 4.5.12 shows the packets sizes and their occurrences. Packets with the size
of 42 bytes dominates the entire trace, with an amount of 1,364,214 packets of the total number
of packets.
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Figure 4.5.15: Probability distribution function (a), and Log-scale normalized histogram (b) associated
with the noise interarrival times
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Figure 4.5.16: Log-scale Normalized Histogram
associated with packets sizes

Size
[Bytes]

Frequency
[Packets]

42 1364214
222.89 305151
403.78 57955
584.67 16624
765.56 4786
946.44 4056
1127.3 3861
1308.2 6014
1489.1 367653
1670 4

Table 4.5.12: Packets sizes and
their frequencies
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4.5.6 Traces Combined

Figure 4.5.17a illustrates the interarrival times probability distribution function for each service
and device. Figure 4.5.17b also shows the normalized histogram of the packets sizes associated
with each services and devices.
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Figure 4.5.17: All Traces Combined
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Chapter 5

Classification

In this chapter, we provide all the techniques for classifying and building the trained model from
the data-sets collected.

Features Engineering. We introduce two different feature engineering techniques: raw and
statistical for classifying services streamed on each device. The raw features consist of interarrival
times and packets sizes, while the statistical features are those extracted from the interarrival
times and packets sizes using statistics methods introduced in chapter 2. For each technique, the
classification is done using the packets sizes, and interarrival times independently and combined.

Noise. For each of the feature engineering set-ups, the classification is done with and without
the presence of noise. The reason for introducing noise is to see its effect on classification
performance.

Classification. The vast majority of our results adopts the Random Forest algorithm for all
our tests being the best performer from related works in the literature [33, 28, 30, 37, 38, 29].
Random Forest implementation [39] was adopted and modified to fit this thesis requirement. We
consider the following configuration for the random forest algorithm: k-folds = 15, number of
trees/bags = 30. All classes have been balanced (by taking the smallest trace size) to ensure that
the number of samples is equal among all the traces.

To summarize all the previous points related to feature engineering, the following set-ups are
considered:

1. Raw Features:

a. Classification using only packets sizes.

b. Classification using interarrival times.

c. Classification using packets sizes and interarrival times.

2. Statistical Features

a. Classification using statistical features extracted from the packets sizes.

b. Classification using statistical features extracted from the interarrival times.

c. Classification using statistical features extracted from both the interarrival times and
packets sizes.
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5.1 Amazon Echo

5.1.1 Interarrival Times

When classifying the interarrival times of the packets arriving at Amazon Echo, with and without
the presence of noise (Figure 5.1.1a, 5.1.1b), the total number of samples per class is 202,263
samples in both scenarios. The accuracy achieved when classifying the two classes/services is
54.8%. While with the presence of noise, we achieve an accuracy of 42.7%.
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Figure 5.1.1: Confusion Matrix with only interarrival times for (a) using two classes, and (b) three
classes classification.

5.1.2 Packets Sizes

For classifying the packets sizes, a similar classification approach (as in previous section) is
adopted. The results obtained is as following: without noise (Figure 5.1.2a), the accuracy is
52.2%. With noise presence (Figure 5.1.2b), the accuracy achieved is 64.6%.
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Figure 5.1.2: Confusion Matrix with only packets sizes for (a) using two classes, and (b) three classes
classification.
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5.1.3 Interarrival Times and Packets Sizes

Theoretically, when combining both features the classification should result in a better accuracy.
Without the presence of noise (Figure 5.1.3a), the accuracy achieved is 56.4%. With noise being
present (Figure 5.1.3b) the model accuracy is at 66.5%.
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Figure 5.1.3: Confusion Matrix with both interarrival times and packets sizes for (a) using two classes,
and (b) three classes classification.

5.1.4 Interarrival Times Statistical Features

The 8 statistical features are extracted from the interarrival times with different window sizes,
starting from 20 to 340 packets. Figures 5.1.4a, 5.1.4b shows the models accuracies, with and
without the presence of noise. In both scenarios, the best achieved accuracy > 90%, when the
window size is set to 300 packets.
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Figure 5.1.4: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing interarrival times statistical features.
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5.1.5 Packets Sizes Statistical Features

Once the 8 statistical features extracted from the packets sizes and classified, the accuracy
obtained without considering the noise is 86% at window size of 300 packets. While with the
presence of noise, the accuracy achieved is approximated to be 90.6%, at window size of 320
packets.
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Figure 5.1.5: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing packets sizes statistical features.

5.1.6 Interarrival Times and Packets Sizes Statistical Features

Similarly to the combined raw features, we combined 16 statistical features extracted from both
packets sizes, and interarrival times. The accuracy obtained in a noiseless environment is 90%
at a window size of 260. While in a noise environment, the accuracy achieved is 93.7% with a
window size of 300 packets.
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Figure 5.1.6: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing both interarrival times and packets sizes statistical features.
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5.2 Amazon Echo Dot

5.2.1 Interarrival Times

The total numbers of samples per class is 93,013 when classifying 2 and 3 classes. When classifying
the interarrival times of the two classes (music and news, Figure 5.2.1a), the obtained accuracy
is 57.9%. With the presence of noise (Figure 5.2.1b), the accuracy achieved is 45.1%.
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Figure 5.2.1: Confusion Matrix with only interarrival times for (a) using two classes, and (b) three
classes classification.

5.2.2 Packets Sizes

The total numbers of samples per class remains the same (93,013) as previously mentioned. The
classification accuracy achieved when using the packets sizes, without the noise being present
(Figure 5.2.2a) is 52.8%. While in the noisy environment, the accuracy is 64.9%.
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Figure 5.2.2: Confusion Matrix with only packets sizes for (a) using two classes, and (b) three classes
classification.
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5.2.3 Interarrival Times and Packet Sizes

The accuracy achieved when combining both raw features without the noise presence is 60.5%.
With the noise being present, the total accuracy is 69.9%.
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Figure 5.2.3: Confusion Matrix with interarrival times and packets sizes for (a) using two classes, and
(b) three classes classification.

5.2.4 Interarrival Times Statistical Features

Once the 8 statistical features extracted from the interarrival times using different window sizes
(from 20 to 340), the results obtained with and without the presence of noise is 89.7% and
89.9% respectively. Figures 5.2.4a, 5.2.4b shows that both models achieve a very similar accuracy
(> 89%) with the same window size set at 280 packets.
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Figure 5.2.4: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing interarrival times statistical features.
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5.2.5 Packets Sizes Statistical Features

The accuracy achieved when using the 8 statistical features extracted from the packets sizes
without the presence of noise (Figure 5.2.5a) is 85.7%, with a window size of 320 packets. In
the noisy environment (Figure 5.2.5b), the classification accuracy achieved is 90.7% when the
window size is also set to 320 packets.
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Figure 5.2.5: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing packets sizes statistical features.

5.2.6 Interarrival Times and Packets Sizes Statistical Features

Combining all 16 statistical features results in accuracy of 90.7% at a window size set to 260
packets, without the presence of noise (Figure 5.2.6a). With the presence of noise, the accuracy
is 93.6% at window size of 260 packets (Figure 5.2.6b).
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Figure 5.2.6: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing both interarrival times and packets sizes statistical features.
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5.3 Google Nest Mini

On this smart IoT device, we only streamed music since it does not stream other services (such
as news) for a longer period as the other devices. Thus, we test the trace against the noise.

5.3.1 Interarrival Times

The total number of samples per class is 197,470. The accuracy achieved with the presence of
noise, using only interarrival times (Figure 5.3.1) is 64.9%.
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Figure 5.3.1: Confusion Matrix with only interarrival times using two classes.

5.3.2 Packets Sizes

The accuracy achieved with the presence of noise, using only packets sizes (Figure 5.3.2) is 91.9%.
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Figure 5.3.2: Confusion Matrix with only packets sizes using two classes.
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5.3.3 Interarrival Times and Packets Sizes

The accuracy achieved with the presence of noise, using both features (Figure 5.3.2) is 91.8%.
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Figure 5.3.3: Confusion Matrix with both interarrival times and packets sizes combined, using two
classes.

5.3.4 Statistical Features

Classification using the extracted statistical features from interarrival times, results in model
with accuracy of 99.9% when window size is set to 320 packets (Figure 5.3.4a). On the contrary,
packets sizes the model built achieved similar accuracy (99.9%) but with a window size of 240
packets (Figure 5.3.4b). When combining both statistical features, the model accuracy is 100%
at window size of 140 packets (Figure 5.3.4c).
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Figure 5.3.4: Services classifications accuracies associated with window sizes achieved when utilizing
(a) interarrival times, (b) packets sizes, and (c) both combined with the presence of noise.
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5.4 Google Chromecast

5.4.1 Interarrival Times

The total numbers of samples per class is 255,837 in both scenarios. When classifying the interar-
rival times of the two classes (music and YouTube), the obtained accuracy is 69.6% (Figure 5.4.1a).
With the presence of noise, the accuracy achieved is 50.9% (Figure 5.4.1b).
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Figure 5.4.1: Confusion Matrix with only interarrival times for (a) using two classes, and (b) three
classes classification.

5.4.2 Packets Sizes

Classifying the packets sizes results in an accuracy of 54.9% (Figure 5.4.2a). With the presence
of noise, the accuracy achieved of the model is 67.4% (Figure 5.4.2b).
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Figure 5.4.2: Confusion Matrix with only packets sizes for (a) using two classes, and (b) three classes
classification.
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5.4.3 Interarrival Times and Packets Sizes

Combining both raw features, the accuracy achieved without noise presence is 71.2% (Fig-
ure 5.4.3a). With noise being present, the total accuracy achieved is 78.5% (Figure 5.4.3b).
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Figure 5.4.3: Confusion Matrix with both interarrival times and packets sizes, for (a) using two classes
and (b) three classes classification.

5.4.4 Interarrival Times Statistical Features

Classifying using the statistical features extracted from the interarrival times without the presence
of noise, results in an accuracy of 98.5% with window size of 200 packets (Figure 5.4.4b). In the
noisy scenario, the accuracy is 97.9% at window size of 320 packets.
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Figure 5.4.4: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing interarrival times statistical features.

41



5.4.5 Packets Sizes Statistical Features

Using statistical features extracted from the packets sizes, the accuracy achieved is 99.5% at
a window size of 340 packets, without the presence of noise (Figure 5.4.5a). With noise, the
accuracy and window size are also the same as without the noise (Figure 5.4.5b).
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Figure 5.4.5: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing packets sizes statistical features.

5.4.6 Interarrival Times and Packets Sizes Statistical Features

Combining both statistical features extracted from the raw feature, the accuracy achieved is
99.5% at a window size of 320 packets, without the presence of noise (Figure 5.4.6a). With noise,
the accuracy and window size are also the same as without the noise (Figure 5.4.6b).
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Figure 5.4.6: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing both interarrival times and packets sizes statistical features.
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5.5 All Devices and Services

In the following classification experiments, we combined all the data-sets and classified each raw
and statistical features individually, with and without the presence of noise. The total number of
samples per class in each experiment is 93013.

5.5.1 Interarrival Times

Starting with the interarrival times, the classification accuracy is 23.5% and 26.2%, with and
without the presence of noise respectively (Figure 5.5.1, and 5.5.2).
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Figure 5.5.1: Confusion Matrix with only interarrival times for all possible classes without noise
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Figure 5.5.2: Confusion Matrix with only interarrival times for all possible classes with noise

Based on these 2 confusion matrices, we can conclude that classifying using only the interarrival
times results in a model with very poor accuracy.
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5.5.2 Packets Sizes

The packet sizes are classified, and the accuracy of the model, without the presence of noise is
54.9% (Figure 5.5.3).
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Figure 5.5.3: Confusion Matrix with only packet sizes for all possible classes without noise

While the presence of noise results in a classification accuracy of 47.5% (Figure 5.5.4).
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Figure 5.5.4: Confusion Matrix with only packet sizes for all possible classes with noise

Overall, the accuracy achieved when using the packet sizes is considered 50/50 to identify the
service and device.
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5.5.3 Interarrival Times and Packets Sizes

Combining both features results in accuracy of 48.2% without the involvement of noise (Fig-
ure 5.5.5). With the noise, the model accuracy is 52.2% (Figure 5.5.6).
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Figure 5.5.5: Confusion Matrix with both interarrival times and packet sizes for all possible classes
without noise
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Figure 5.5.6: Confusion Matrix with both interarrival times and packet sizes for all possible classes
with noise

Classification using the raw features combined results in an approximated probability of 50%, in
identifying the device and services running.
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5.5.4 Interarrival Times Statistical Features

Using statistical methods to extract features from the raw data, the accuracy achieved using
the interarrival times without the presence of noise is 84.2% at window size of 300 packets
(Figure 5.5.7a). With the presence of noise the accuracy is 85.2% with window size of also 300
packets (Figure 5.5.7b).
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Figure 5.5.7: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing interarrival times statistical features.

5.5.5 Packets Sizes Statistical Features

For the packet sizes, the accuracy in noiseless environment is 81.5% with window size of 320
(Figure 5.5.8a). While in a noisy link, the accuracy achieved is 83.0%, with window size of 320
(Figure 5.5.8b).

0 50 100 150 200 250 300 350
Window Size [Packets]

65

70

75

80

85

A
cc

ur
ac

y 
[%

]

Accuracy: 81.4869

W
in

do
w

 S
iz

e:
 3

20

Packets Sizes

(a)

0 50 100 150 200 250 300 350
Window Size [Packets]

65

70

75

80

85

A
cc

ur
ac

y 
[%

]

Accuracy: 83.0347

W
in

do
w

 S
iz

e:
 3

20

Packets Sizes

(b)

Figure 5.5.8: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing packets sizes statistical features.
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5.5.6 Interarrival Times and Packets Sizes Statistical Features

The accuracy achieved in a noiseless environment is 90.3% with a window size of 220 (Fig-
ure 5.5.9a). With the noise scenario, the accuracy is 91.1% with window size of 180% packets
(Figure 5.5.9b).
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Figure 5.5.9: Services classifications accuracies associated with window sizes achieved (a) without, and
(b) with the presence of noise, when utilizing both interarrival times and packets sizes statistical features.
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5.6 Results Discussion

In this chapter, we introduced 2 different features engineering techniques: Raw and Statistical, to
classify traffic associated with 3 services running on four different smart home IoT devices, using
Random Forest machine learning algorithm. First we classified raw features (interarrival times
and packets sizes) individually and combined. Similarly, we classified based on the statistical
features extracted from the raw features. For both techniques, the classification was done with
and without the presence of noise.

5.6.1 Raw Features

In Table 5.6.1, all the classification accuracies associated with each device running different
service(s) and feature(s) used is summarised. The classification is ran against two services
streamed by the same device, with and without the presence of noise. It can be noticed that in
most cases, when classifying using both features combined (interarrival times and packets sizes),
the accuracy achieved is much higher than classifying each independently, even with the presence
of noise.

Device Service(s) Feature(s) Noise Accuracy [%] Figure

Amazon
Echo

Music
vs.

News

Interarrival Times 54.8 5.1.1a
✓ 42.7 5.1.1b

Packets Sizes 52.2 5.1.2a
✓ 64.6 5.1.2b

Combined 60.6 5.1.3a
✓ 66.5 5.1.3b

Amazon
Echo Dot

Music
vs.

News

Interarrival Times 57.9 5.2.1a
✓ 45.1 5.2.1b

Packets Sizes 52.8 5.2.2a
✓ 64.9 5.2.2b

Combined 60.5 5.2.3a
✓ 69.9 5.2.3b

Google
Nest Mini

Music
vs.

Noise

Interarrival Times ✓ 64.9 5.3.1
Packets Sizes ✓ 91.9 5.3.2

Combined ✓ 91.8 5.3.3

Google
Chromecast

Music
vs.

YouTube

Interarrival Times 69.6 5.4.1a
✓ 50.9 5.4.1b

Packets Sizes 54.9 5.4.2a
✓ 67.4 5.4.2b

Combined 71.2 5.4.3a
✓ 78.5 5.4.3b

All
Devices

All
Services

Interarrival Times 26.2 5.5.1
✓ 23.5 5.5.2

Packets Sizes 54.9 5.5.3
✓ 47.5 5.5.4

Combined 48.2 5.5.5
✓ 52.2 5.5.6

Table 5.6.1: Using Raw Features
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5.6.2 Statistical Features

When extracting statistical features from the raw features, the accuracy is dramatically increased
along with increasing the window size N. Table 5.6.2 illustrates the obtained accuracies for all
the devices and services streamed with and without the presence of noise. The classification was
done using different window sizes, starting from N = 20 to 340. When classifying interarrival
times or packets sizes independently, it can be see that the model accuracy is > 85.7%. With
the presence of noise, the results obtained are > 93.6%. In Table 5.6.3, we extracted statistical
features from all traces, and tested each individually against different chunks of the noise data-set.
The results obtined shows that using window size of 180 packets, with the presence of noise,
gives very high and accurate classification results.

Device Service Feature Noise Accurecy
[%]

Window Size
[Packets]

Figure

Amazon
Echo

Music
vs.

News

Interarrival Times 90.1 300 5.1.4a
✓ 90.1 300 5.1.4b

Packets Sizes 86.0 300 5.1.5a
✓ 90.6 320 5.1.5b

Combined 90.5 260 5.1.6a
✓ 93.7 300 5.1.6b

Amazon
Echo Dot

Music
vs.

News

Interarrival Times 89.9 280 5.2.4a
✓ 89.7 280 5.2.4b

Packets Sizes 85.7 320 5.2.5a
✓ 90.7 320 5.2.5b

Combined 90.7 260 5.2.6a
✓ 93.6 260 5.2.6b

Google
Nest Mini

Music
vs.

Noise

Interarrival Times ✓ 99.9 320 5.3.4a
Packets Sizes ✓ 99.9 240 5.3.4b

Combined ✓ 100 140 5.3.4c

Google
Chromecast

Music
vs.

YouTube

Interarrival Times 98.5 200 5.4.4a
✓ 97.9 320 5.4.4b

Packets Sizes 99.5 340 5.4.5a
✓ 99.5 340 5.4.5b

Combined 99.5 320 5.4.6a
✓ 99.5 320 5.4.6b

All
Devices

All
Services

Interarrival Times 84.2 300 5.5.7a
✓ 85.2 300 5.5.7b

Packets Sizes 81.5 320 5.5.8a
✓ 83.0 320 5.5.8b

Combined 90.3 220 5.5.9a
✓ 91.1 180 5.5.9b

Table 5.6.2: Using Statistical Features
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5.6.3 Testing against different Noise segments

In this experiment, the best performing window size selected and used to test the traces against
different chunks of noise. The noise is divided into chunks based on the number of samples of
the trace being evaluated. The trace is then classified against each noise chunk and the mean of
all confusion matrices is taken. Table 5.6.3 shows the obtained accuracies associated with devices
and services. It can be seen that all accuracies are > 0.99.

Device Service TPR FPR [·10−4] Accuracy

Amazon Echo Dot Music 0.9997 0 0.9999
News 0.9996 5.28 0.9996

Amazon Echo Music 0.9995 2.64 0.9996
News 0.9996 4.40 0.9996

Google Chromecast Music 0.9993 4.40 0.9994
YouTube 0.9982 4.40 0.9989

Google Nest Mini Music 0.9987 5.30 0.9991

Table 5.6.3: Performance for Devices/Services detection with window size set to 180 packets and
presence of Noise
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Chapter 6

Countermeasures

Preventing network traffic classification is a challenging task since it strongly depends on the
features adopted by the machine learning algorithm used for the classification. Thus, the
adversary model (see Section 4.3) is critical since the attack performance can be significantly
mitigated if the adversary is not able to build a ground-truth related to the device/service traffic.
The best-case scenario (from the user perspective) is a completely flat traffic with no patterns,
e.g., by generating traffic with packet sizes and interarrival times that cannot be detected as
anomalies. Nevertheless, such an approach can hinder the quality of experience associated with
the service, while traffic reshaping might require a different calibration of the device’s network
buffers.

6.1 Leaky Bucket

Imagine a bucket with a small hole at the bottom, no matter how much water is poured into the
bucket, the amount or rate at which water flows out of the small hole is constant, this is how
leaky bucket algorithm works. The leaky bucket is one of the congestion control mechanisms used
to reduce congestion in the network, by reshaping the traffic at a constant rate. The algorithm
works as follows:

• Packets that will be transmitted over the network are added to the bucket.

• If the bucket is full, any new packets are discarded.

• The bucket ”leaks”/transmit the packets at a predefined constant rate.
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Figure 6.1.1: How Leaky Bucket Works [5]

Mitigation Technique

Leaky Bucket algorithm can be used to mitigate the pattern created by the interarrival times.
Since its capable of sending out packets at a constant rate, which will make it difficult (almost
impossible) for the adversary to infer by using or just looking at the interarrival times. That is
because the arrival times for N packets will be identical since they are processed at the same fixed
rate. The algorithm could be implemented in different places, for example on the sender (server)
side, where the streaming data generated and sent to the receiver (user). Or on the receiver side,
or between both sender and receiver. However, this method is considered a trade-off, as it will
affect the quality of service delivered to the user, due to the delay it will cause when for example
streaming videos.
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Chapter 7

Conclusion

This work presents a major privacy leakage problem associated with the usage of the smart
IoT assistant devices. The adversarial model introduced in this study is capable of identifying
services and devices running within the user network, by utilizing two features from the traffic
flow: interarrival times and packets sizes. These features are extracted and calculated from
packets transmitted over the Wi-Fi link.

We presented a step by step procedures for data collection over the Wi-Fi and performed massive
data collection campaign from four different widely used devices (Amazon Echo, Amazon Echo
Dot, Google Nest Mini, and Google Chromecast) running three popular services: music, news,
and YouTube. An in-depth analysis of the collected data was performed, and the results of this
analysis show that each of the services associated with its devices, has its unique pattern by just
examining the most frequent interarrival times and packets sizes.

For classification, the Random Forest algorithm was used, considering it the best performer
among other supervised and unsupervised machine learning algorithms. Two different features
engineering approaches were used for classification: 1. by using raw features, 2. computing and
extracting 8 different statistical features from the raw features, over a predefined window size of
packets.

The presented methodology has proved the existence of the aforementioned privacy leakage
and proved the feasibility of the attack with accuracies > 0.99 for identifying and classifying
devices running several services within a noisy environment. Finally, we introduced a mitigation
technique named ”leaky bucket”, that process the packets sent from the streaming source to the
receiving device at a constant rate. Thus, mitigating the phenomena created by the interarrival
times and makes it impossible for flows to be identified.

7.1 Future Work

For future work, portable implementation of the adversarial model is considered. Where the
usage of mini-computers such as Raspberry PI, powered by a portable power bank could be
more critical. As it could be left anywhere without it being noticed and collect data for hours.
Furthermore, increasing the number of devices and services is considered.
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